Mathematics Homework

1. Simplify $x=(56+18 \times 7)-22(0.5 * 17)$.
2. $\lambda=\frac{s}{f}$ Solve for f where $\lambda=0.78$ and $s=340$.
3. Simplify $x=10^{-0.28}$.
4. Simplify $x=\log _{10} 0.89$.
5. Simplify $x=$ antilog ${ }_{10} 1.68$.
6. Convert to scientific notation $54,300,000$.
7. Convert to scientific notation 862.57×10^{-5}.
8. Convert 78° into radians.
9. Calculate the sine of the angle $\theta=54^{\circ}$.
10. Convert Cartesian coordinates $(51,17)$ to polar coordinates.

Math topics for hearing science

- Arithmetic
- Algebra
- Geometry
- Trigonometry
(3) Wolters Kluwer | Lippincott Williams \& Wilkins

Equations

An equation is a statement asserting the equality of two quantities.

$$
7 \times 3=[(z+3) \times(2-7)]
$$

Solving equations

Solving an equation means rewriting it so that one side of the equation is an unknown variable and the other side is as simple as possible.

Substitution

Substitution is the act of replacing a variable with something else.

- A variable is a letter or symbol representing an unknown number

Substitution (cont.)

What are the variables in this equation?

$$
\lambda=c / f
$$

$$
\lambda=c / f
$$

$$
\lambda=340 / 1000
$$

λ, c, and f are all variables
(3) Wolters Kluwer | Lippincott Williams \& Wilkins

Substitution (cont.)

If we know that $\mathrm{f}=1000$ and $\mathrm{c}=340$, what would the equation look like after substitution?

And then after simplification:

$$
\lambda=.34
$$

(3) Wolters Kluwer | Lippincott Williams \& Wilkins

Order of Operations (PEMDAS)

1. Operations in Parentheses
2. Exponents (logs)
3. Multiplication and Division
4. $\boldsymbol{A} d d i t i o n$ and Subtraction

Example (cont.)

Solving for x

Solving for x means manipulating an equation to isolate x on one side.

- x may be represented by other letters
- For example: d, t, v, θ, λ, etc.

Example

$$
\begin{gathered}
x+2=14 \\
x+2 \underline{-2}=14 \underline{-2} \\
x=12
\end{gathered}
$$

Solving for x (cont.)

To solve for x when there is more than one mathematical step, you must use the reverse Order of Operations.

Solving for x (cont.)

Instead of PEMDAS use SADMEP.

- $\underline{\text { Sub }}$ ubtraction \& $\underline{\text { Addition }}$
- Division \& Multiplication
- Exponentiation
- Parentheses

Example with substitution, simplification, and solving for x

$$
x=59-4+6 y+20 \times 10^{3}
$$

Solve for y where $x=1.3$
(3) Wolters Kluwer | Lippincott Williams \& Wilkins

Example (cont.)

(3) Wolters Kluwer | Lippincott Williams \& Wilkins

Example (cont.)

$$
-20,053.7=6 y
$$

$$
-20,053.7 \div \mathbf{6}=6 y \div \mathbf{6}
$$

$$
-3342.283333=y
$$

$$
-3342.28=y
$$

(3) Wolters Kluwer | Lippincott Williams \& Wilkins

Exponents

An exponent represents the number of times a base is multiplied by itself.

$$
10^{4}=10 \times 10 \times 10 \times 10=10,000
$$

4 or less, round down
5 or greater, round up

Exponents (cont.)

An exponent is also called a logarithm (log) or a power.

(3) Wolters Kluwer | Lippincott Williams \& Wilkins

Exponents (cont.)
For base 10, with a positive whole number log, the number of zeros is equal to the log.

$$
\begin{aligned}
& 10^{0}=1 \\
& 10^{1}=10 \\
& 10^{2}=10 \times 10=100 \\
& 10^{3}=10 \times 10 \times 10=1000
\end{aligned}
$$

(3) Wolters Kluwer | Lippincott Williams \& Wilkins

Exponents (cont.)

Use a calculator or log table if the log is not a whole number.
number log, the number of decimal places is equal to the log.

$$
\begin{aligned}
& 10^{-1}=0.1 \\
& 10^{-2}=0.01 \\
& 10^{-3}=0.001 \\
& 10^{-4}=0.0001
\end{aligned}
$$

$$
10^{6.8}=6309573.45
$$

Exponents (cont.)

Log expressions are written two ways:

$$
\begin{gathered}
\log _{10} 1,268=x \\
10^{x}=1,268 \\
x=3.10
\end{gathered}
$$

(3) Wolters Kluwer | Lippincott Williams \& Wilkins

Antilogs

When you raise a base to a log you get an antilog.

Antilogs (cont.)
Antilog expressions are written two ways: Antilog 103 $10^{3.2}=x$
$x=1584.89$

Scientific notation

Scientific notation is a way of representing very large or very small numbers in a condensed form.

$$
a \times 10^{n}
$$

$1 \leq a<10$
n is an exponent

Example

2.47×10^{-9}

The decimal moved 9 spaces to the right.
Notice the log is negative in this case. This number becomes the log.

Scientific notation (cont.)

Various calculator displays of 2.47×10^{-9}

$$
\begin{gathered}
2.47 \times 10^{-9} \\
2.47 \mathrm{E}-9 \\
2.47-9 \\
2.47 \wedge-9
\end{gathered}
$$

Converting from scientific to

 standard notation6.54×10^{7}
$\xrightarrow{65400000}$.

Decimal to the right for positive logs

Converting from scientific to standard notation (cont.)

$$
\begin{aligned}
& 4.35 \times 10^{-5} \\
& .0000435
\end{aligned}
$$

Decimal to the left for negative logs
(3) Wolters Kluwer | Lippincott Williams \& Wilkins

Dividing numbers in scientific notation

$$
\frac{a \times b}{c \times d}=\frac{a}{c} \times \frac{b}{d}
$$

Example (cont.)

Notice what happened to this part of the expression.

$$
\frac{10^{11}}{10^{12}}=10^{-1}
$$

Two basic log rules
(a) $\frac{x^{a}}{x^{b}}=x^{a-b}$
(b) $x^{a} \times x^{b}=x^{a+b}$

Example (cont.)

The answer:

$$
0.757 \times 10^{-1}
$$

Examine the first number. Notice it does not follow the rule: $1 \leq a<10$.

Example (cont.)
$0.757 \times 10^{-1} \downarrow$
7.57×10^{-2}
For conversion, the first number must become larger so the second number must become smaller.

Geometry

- Plane geometry
- Two-dimensional figures
- Solid geometry
- Three-dimensional objects become larger so the second number must become smaller.

Angles (cont.)

- Line $A B$ is intersected by line EF at point C.
- Angles above line
 AB are <ACE and <BCE.

Circle

A circle is a curved line in which every

Circle (cont.)

point on it is the same distance away from the center point.

The radius (r) is a line drawn from the central point to a point on the circle.

\qquad

Circle (cont.)

A straight line between two points that passes through the center is called the diameter (d).

$$
d=2 r
$$

Circle (cont.)

- This angle is called theta and is written with the symbol θ.
- The angle is measured in degrees (${ }^{0}$).

Circle (cont.)

One full rotation around the circle corresponds to 360°.

Circle (cont.)

- Sometimes the circle is divided into two halves:
- 0° to 180° in one $1 / 2$
- 0° to -180° in the other $1 / 2$

Example

Convert 65° into radians
$x(\mathrm{rad})=y^{\circ} \times \frac{\pi}{180^{\circ}}$
$x(\mathrm{rad})=65^{\circ} \times \frac{\pi}{180^{\circ}}$
$x($ rad $)=65^{\circ} \times 0.01745$
$x(\mathrm{rad})=1.13$
$65^{\circ}=1.13$ radians

Right triangle

- A right triangle contains a 90° angle.
- The hypotenuse is the longest side of the right triangle.
Circle (cont.)
- The other way to measure angles is with a unit called a radian (rad).
- The whole circle (360°) has 2π radians.
$1 \mathrm{rad}=\frac{360^{\circ}}{2 \pi} \approx 57.3^{\circ}$
$1^{\circ}=\frac{2 \pi}{360^{\circ}} \approx 0.0175 \mathrm{rad}$

Circle (cont.)

- To convert from degrees to radians:

$$
x(r a d)=y^{\circ} \times \frac{\pi}{180^{\circ}}
$$

- To convert from radians to degrees:

$$
x^{\circ}=y(\mathrm{rad}) \times \frac{180^{\circ}}{\pi}
$$

Right triangle (cont.)

-The adjacent side is adjacent to the hypotenuse and forms the angle θ with the hypotenuse.

-The opposite side is the side opposite the angle θ.

Pythagorean Theorem

The sum of the squares of the two shorter sides of a right triangle is equal to the square of the hypotenuse.

Example

If the two shorter sides of a triangle are 5.4 cm and 6.3 cm , what is the length of the hypotenuse?

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2} \\
a & =\sqrt{b^{2}+c^{2}}
\end{aligned}
$$

Common trigonometric functions

Trigonometric functions result when you divide the length of any one side of a right triangle by the length of another side.
$\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$
$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$
$\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$

Example
What is the sine of a 36° angle?
Use the sine key from a scientific calculator.
sine $36^{\circ}=.59$

Coordinate systems

Coordinates are distances or angles that uniquely identify the position of specific points in space in reference to a certain central point called the origin.

2-dimensional Cartesian Coordinates (x, y)

3-dimensional Cartesian Coordinates (x, y, z)

2-dimensional polar coordinates (r, θ)

- r is the distance between the point and the origin.
- θ is the angle between the x axis and the line to the point.

v \qquad
(3) Wolters Kluwer | Lippincott Williams \& Wilkins

Polar to Cartesian conversion

$x=r \cos \theta$
$y=r \sin \theta$

Cartesian to polar conversion
$r=\sqrt{x^{2}+y^{2}}$
$\theta=\tan ^{-1}\left(\frac{y}{x}\right)$

Example (cont.)

First, determine the x coordinate

$$
\begin{gathered}
x=r \cos \theta \\
x=20 \cos \left(35^{\circ}\right) \\
x=20 \times 0.81915 \\
x=16.38
\end{gathered}
$$

Example (cont.)

Next, determine the y coordinate

$$
\begin{gathered}
y=r \sin \theta \\
y=20 \sin \left(35^{\circ}\right) \\
y=20 \times 0.57358 \\
y=11.47
\end{gathered}
$$

Example (cont.)

$r=\sqrt{x^{2}+y^{2}}$
$r=\sqrt{5^{2}+10^{2}}$
$r=\sqrt{125}$
$r=11.18$

Example (cont.)

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{y}{x}\right) \\
& \theta=\tan ^{-1}\left(\frac{10}{5}\right) \\
& \theta=\tan ^{-1} 2 \\
& \theta=63.43^{\circ}
\end{aligned}
$$

Functions

Cartesian and polar coordinates are usually used to describe a series of points that form a line.

Functions (cont.)

- The relationship between the coordinates that form a line is called a function.
- A function is an equation that shows the relationship between two sets of numbers.

The function $y=.82 x+2$

Straight line functions have this form:

$$
y=m x+b
$$

For every value of x, the value of y can be determined.

Mathematics Homework

ANSWER KEY

1. Simplify $x=(56+18 \times 7)-22(0.5 * 17)$.

$$
\begin{gathered}
x=(56+18 \times 7)-22(0.5 * 17) \\
x=(56+126)-22(8.5) \\
x=182-187
\end{gathered}
$$

Answer: $x=-5$
2. $\lambda=\frac{s}{f}$ Solve for f where $\lambda=0.78$ and $s=340$.

$$
\begin{aligned}
\lambda & =\frac{s}{f} \\
0.78 & =\frac{340}{f} \\
0.78 \times f & =1 \times 340 \\
f & =\frac{340}{0.78}
\end{aligned}
$$

Answer: $f=435.9$
3. Simplify $x=10^{-0.28}$.

$$
x=10^{-0.28}
$$

Answer: $x=0.52$
4. Simplify $x=\log _{10} 0.89$.

$$
x=\log _{10} 0.89
$$

Answer: $x=-0.05$
5. Simplify $x=\operatorname{antilog} 101.68$.

$$
x=\operatorname{antilog}_{10} 1.68
$$

Answer: $x=47.86$
(Note: $10^{1.68}=47.86$)
6. Convert to scientific notation $54,300,000$.

Answer: 5.43×10^{7}
7. Convert to scientific notation 862.57×10^{-5}.

Answer: 8.6257×10^{-3}
8. Convert 78° into radians.

$$
\begin{aligned}
& x(\mathrm{rad})=y\left(^{\circ}\right) \times \frac{\pi}{180^{\circ}} \\
& x(\mathrm{rad})=78^{\circ} \times \frac{\pi}{180^{\circ}}
\end{aligned}
$$

Answer: $x=1.36 \mathrm{rad}$
9. Calculate the sine of the angle $\theta=54^{\circ}$.

Answer: $\sin 54^{\circ}=0.81$
10. Convert Cartesian coordinates $(51,17)$ to polar coordinates.

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}}=\sqrt{51^{2}+17^{2}}=53.76 \\
& \theta=\tan ^{-1}\left(\frac{y}{x}\right)=\tan ^{-1}\left(\frac{17}{51}\right)=18.43^{\circ}
\end{aligned}
$$

Answer: (53.76, 18.43°)

