1. Simplify $x = (56 + 18 \times 7) - 22(0.5 * 17)$.

2.
$$\lambda = \frac{s}{f}$$
 Solve for *f* where $\lambda = 0.78$ and $s = 340$.

- 3. Simplify $x = 10^{-0.28}$.
- 4. Simplify $x = \log_{10} 0.89$.
- 5. Simplify $x = \operatorname{antilog}_{10} 1.68$.
- 6. Convert to scientific notation 54,300,000.
- 7. Convert to scientific notation 862.57×10^{-5} .
- 8. Convert 78° into radians.
- 9. Calculate the sine of the angle $\theta = 54^{\circ}$.
- 10. Convert Cartesian coordinates (51, 17) to polar coordinates.

Math topics for hearing science

- Arithmetic
- Algebra
- Geometry
- Trigonometry

Wolters Kluwer Lippincott Williams & Wilkin

Solving for x (cont.) Whatever you do to one side of an equation you must do to the other side of the equation

Solving for x (cont.) To solve for x when there is more than one mathematical step, you must use the <u>reverse</u> Order of Operations.

Wolters Kluwer | Lippincott Williams & Wilkin:

Example with substitution, simplification, and solving for x

$$x = 59 - 4 + 6y + 20 \times 10^{3}$$
Solve for y where x = 1.3

Example (cont.)

$$x = 59 - 4 + 6y + 20 \times 10^{3}$$

$$1.3 = 59 - 4 + 6y + 20 \times 10^{3}$$

$$1.3 = 59 - 4 + 6y + 20 \times 1000$$

$$1.3 = 59 - 4 + 6y + 20,000$$
Meters View Lippincet Welliams & Wilking

Example (cont.)

$$-20,053.7 = 6y$$

 $-20,053.7 \div 6 = 6y \div 6$
 $-3342.283333 = y$
 $-3342.28 = y$
Moders Kluwer Lippircott Williams & Wilkins

Dividing numbers in scientific
notation
$$\frac{a \times b}{c \times d} = \frac{a}{c} \times \frac{b}{d}$$

Example (cont.)
Notice what happened to this part of the expression.

$$\frac{10^{11}}{10^{12}} = 10^{-1}$$

Example (cont.)

Two basic log rules
a
$$\frac{x^a}{x^b} = x^{a-b}$$

b $x^a \times x^b = x^{a+b}$
(b) Correct Values Advectory of the second seco

Example (cont.)
The answer:

$$0.757 \times 10^{-1}$$

Examine the first number. Notice it does
not follow the rule: $1 \le a < 10$.

Circle (cont.) • The other way to measure angles is with a unit called a <u>radian</u> (rad). • The whole circle (360°) has 2π radians. $1 \operatorname{rad} = \frac{360^{\circ}}{2\pi} \approx 57.3^{\circ}$ $1^{\circ} = \frac{2\pi}{360^{\circ}} \approx 0.0175 \operatorname{rad}$ <u>Rever Lippincett Williams & Wilking</u>

Circle (cont.) • To convert from degrees to radians: $x(rad) = y^{\circ} \times \frac{\pi}{180^{\circ}}$ • To convert from radians to degrees: $x^{\circ} = y(rad) \times \frac{180^{\circ}}{\pi}$

ANSWER KEY

1. Simplify $x = (56 + 18 \times 7) - 22(0.5 * 17)$.

$$x = (56 + 18 \times 7) - 22(0.5 * 17)$$
$$x = (56 + 126) - 22(8.5)$$
$$x = 182 - 187$$

Answer: x = -5

- 2. $\lambda = \frac{s}{f}$ Solve for f where $\lambda = 0.78$ and s = 340. $\lambda = \frac{s}{f}$ $0.78 = \frac{340}{f}$ $0.78 \times f = 1 \times 340$ $f = \frac{340}{0.78}$ Answer: f = 435.9
- 3. Simplify $x = 10^{-0.28}$.

 $x = 10^{-0.28}$

Answer: x = 0.52

4. Simplify $x = \log_{10} 0.89$.

 $x = \log_{10} 0.89$

Answer:
$$x = -0.05$$

5. Simplify $x = \operatorname{antilog}_{10} 1.68$.

 $x = \operatorname{antilog}_{10} 1.68$

- Answer: x = 47.86(Note: $10^{1.68} = 47.86$)
- 6. Convert to scientific notation 54,300,000.
 - Answer: 5.43×10^7
- 7. Convert to scientific notation 862.57×10^{-5} .

Answer:
$$8.6257 \times 10^{-3}$$

8. Convert 78° into radians.

$$x (rad) = y (^{\circ}) \times \frac{\pi}{180^{\circ}}$$
$$x (rad) = 78^{\circ} \times \frac{\pi}{180^{\circ}}$$

Answer: x = 1.36 rad

 180°

9. Calculate the sine of the angle $\theta = 54^{\circ}$.

Answer: $\sin 54^\circ = 0.81$

10. Convert Cartesian coordinates (51, 17) to polar coordinates.

$$r = \sqrt{x^2 + y^2} = \sqrt{51^2 + 17^2} = 53.76$$
$$\theta = \tan^{-1}(\frac{y}{x}) = \tan^{-1}(\frac{17}{51}) = 18.43^{\circ}$$

Answer: (53.76, 18.43°)